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Foreword

Remarks

• We are going to develop several ideas by Goldblatt on semantics of
intuitionistic modal predicate logics.

• This approach is based on the Dedekind-MacNeille completions and
cover systems. Such an approach is striclty connected with
Kripke-Joyal semantics.

• We consider modalities from the logic IEL− algebraically as prenuclear
operators from point-free topology and the theory of locales.
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Completeness with respect to cover semantics

We have the following scheme:

A Heyting algebra with an operator

��

The Dedekind-MacNeille completion// A locale with an operator

��
The Lindenbaum-Tarksi algebra

OO

��

A suitable cover system

��
Some logic

OO

// The completeness theoremoo

1. The diagram above “commutes”.
2. All main technical tricks are related to the Dedekind-MacNeille
completion.
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Heyting algebras and locales

The de�nition of a (complete) Heyting algebra

1. A Heyting algebra is a bounded distributive lattice H = 〈H,∧,∨,⊥,>〉
with the binary operation⇒ such that the following equivalence holds:

a ∧ b ≤ c i� a ≤ b⇒ c

2. A complete Heyting algebra (locale) is a complete lattice L = 〈L,∧,
∨
〉

such that �nite in�ma distribute over arbitrary suprema:

a ∧
∨
B =

∨
{a ∧ b | b ∈ B} for each B ⊆ L.

Locales are about

1. A lattice-theoretic approximation of topogical spaces,
2. The complex algebra of an arbitrary intuitonistic Kripke frame is
actually a locale.
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A nucleus operator

De�nition
A nucleus operator on a Heyting algebra H is a closure operator j
distributing over �nite in�ma

Nuclei are about

• Fixpoints form a Heyting subalgebra.
• A nucleus is a (version of) geometric modality describing the notion of
local truth. This aspect is based on the notion of a
Lawvere-Tierney-Grothendieck topology.

• Dragalin-style semantics of intuitionistic and intermediate logics.
• As a modality, a nucleus is an algebraic analogue of the lax modality.
• We’ve already discussed the connection with the lax logic.
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Cover systems

Before the strict de�nition, we discuss some background stu�:

Background stu�

• Cover semantics is based on the notion of local truth in
topological/topos-theoretic terms.

• A statement ϕ is true at X (where X is a space or an open set), if X has
an open cover for each member of which ϕ is true.

• The example is a property of a function being locally constant on some
neighbourhood.

• Cover semantics is about abstract local truth with arbitrary cover
systems (non-necessary topologically based).

• A statement ϕ is locally true at x (of some partial order) if x has a cover
C such that ϕ is true at every point of C.
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Cover systems

Let 〈P,≤〉 be a poset and . a a binary relation between P and P(P). x ∈ P
and C ⊆ P, then we say that x is covered by C (C is an x-cover), if x . C.

(strictly localic) cover system
A (strictly localic) cover system is a triple S = 〈P,≤, .〉 such that

1. (Existence) There exists an x-cover C ⊆ ↑ x
2. (Transitivity) Let x . C and for each y ∈ C y . Cy , then x .

⋃
y∈C Cy

3. (Re�nement) If x ≤ y, then C . x implies that there exists an y-cover C′

such that C′ ⊆ ↑ C
4. (the strict localic axiom) Every x-cover is included in ↑ x.
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Cover systems, due to [Goldblatt 2011]

Let S = 〈P,≤, .〉 be a strictly localic cover system.

j-operator
De�ne an operator j : P(P)→ P(P) such that:

jX = {x ∈ P | ∃C x . C ⊆ X}

x is a local member X, if x ∈ jX. A subset X is localised, if jX = X. We call
such a set a proposition.

Theorem [Goldblatt 2011]

1. If X is an up-set, so is jX. Moveover, j is a nucleus operator on Up(P,≤).
2. The set of localised up-sets is a locale with

∨
i∈I
Xi = j(

⋃
i∈I Xi).

3. Every locale is isomorphic to the locale of propositions of some cover
system.
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The Dedekind-MacNeille completion for Heyting algebras

Dedekind-MacNeille completion
Given a bounded lattice L, a completion of L is a complete lattice L that
contains L as a sublattice. A completion L is called Dedekind-MacNeille if
every element of a ∈ L is both a join and meet of elements of L:

a =
∨
{b ∈ L | a ≤ b} =

∧
{b ∈ L | b ≤ a}.

If L is a Heyting algebra, then L is a locale.

Theorem
Every Heyting algebra is representable as a subalgebra of propositions of
some strictly localic cover system.
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Completeness theorem for intutionistic predicate logic

Cover models
Let S = 〈P,≤, .〉 be a strictly localic cover system and let D be a
non-empty set, a domain of individuals. Let V be a valuation function that
maps each k-ary predicate letter P to V(P) : Dk → Prop(S).

A D-assignment is an in�nite sequence σ = 〈σ0, σ1, . . . , σn, . . . 〉, where
σi ∈ D for each i < ω. Such a D-assignment maps each variable xi to the
corresponding σi.

A structureM = 〈S,D, V〉 is a cover model.

The forcing relation

1. M, x, σ  P(xn1 , . . . , xnk) i� x ∈ V(P)(σn1 , . . . , σnk).
2. M, x, σ  ⊥ i� x . ∅
3. M, x, σ  ϕ ∨ ψ i� there exists an x-cover C such that for each y ∈ C

M, y, σ  ϕ orM, y, σ  ψ.
4. M, x, σ  ∃xnϕ i� there exist an x-cover C and d ∈ D such that for each
y ∈ C one hasM, y, σ(d/n)  ϕ.
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Completeness theorem for intuitionistic predicate logic

Theorem
Intuitionistic predicate logic is complete w.r.t. strictly localic models.

Based on the representation of the Dedekind-MacNeille completion of the
Lindenbaum-Tarski algebra with some strictly localic cover system. We put
variables as the set of domain individuals.

Alternatively, one may construct a strictly localic cover system on certian
theories (ever weaker than prime ones). Such a construction (simpler than
the Henkin construction) is also due to Goldblatt.
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Modal cover systems

Let S = 〈P,≤, .〉 be a strictly localic cover system and R ⊆ P× P a binary
relation on P.

Modal cover system
A structure S = 〈P,R,≤, .〉 is called modal cover system, if the following
hold:

1. (Con�uence) If x ≤ y and xRz, then there exists w such that yRw and
z ≤ w.

2. (Modal localisation) If there exists C such that x . C ⊆ 〈R〉A, then there
exists y ∈ R(x) with a y-cover included in X.

where 〈R〉A = {x ∈ S | ∃y ∈ A xRy} = R−1(A)

Theorem
Let L be a locale and f : L → L a monotone operator, then 〈L, f 〉 is
isomorphic to some algebra of propositions of some modal cover system.
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Prenuclear operators, the origins

Theorem
Let H be a Heyting algebra, a prenucleus on H is an operator monotone
j : H → H such that for each a,b ∈ H:

1. a ≤ ja
2. ja ∧ b ≤ j(a ∧ b).

A prenucleus is called multiplicative if it distributives over �nite in�ma
(an IEL−-algebra). A multiplicative prenuclear algebra is called an
IEL-algebra, if j⊥ = ⊥

Prenuclear algebras are about

• Generating nucleus on a locale with trans�nite sequence of prenuclei.
• A nuclear re�ection, an approximation of a nucleus on a locale with
prenuclei, to de�ne the join of nuclei.

• A multiplicative prenuclear operator also reminds of the IEL− modality.
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The Dedekind-MacNeille completion for prenuclear algebras

• Here we note that all those classes are closed under the
Dedekind-MacNeille completion.

• Let us drop the details, it is not so complicated, but tricky anyway.
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Prenuclear cover systems and their variations

Prenuclear cover systems
Let S = 〈S,�, .,R〉 be a modal cover system, then S is called prenuclear, if
the following two conditions hold:

1. R is re�exive.
2. Let x, y ∈ S such that xRy, then there exists z ∈ ↑ y such that x ≤ z and
x ∈ R(z).

A prenuclear cover system is called multiplicative (an IEL−-cover system),
if the following hold:

1. R is serial, that is, for each x ∈ S there exists y ∈ S such that xRy.
2. if xRy and xRz then there exists w ∈ ↑ x ∩ ↑ y such that xRw.
3. Let x, y ∈ S such that xRy, then there exists z ∈ ↑ y such that x ≤ z and
x ∈ R(z).

A multiplicative prenuclear cover system is called an IEL-cover system, if
for each x, y ∈ S if xRy and y . ∅ implies x . ∅.
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The representation theorem for prenuclear algebras

Here we apply our Dedekind-MacNeille statement for the second item of
the following theorem:

Theorem, [D. R. 2020]

1. Every complete prenuclear algebra (as well as a multiplicative or an IEL
one) is isomorphic to some algebra of localised up-set of the
corresponding cover system.

2. Every prenuclear algebra (as well as a multiplicative or IEL one) is
isomorphic to some subalgebra of localised up-set of the
corresponding cover system.
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Prenuclear cover systems and their variations

The underlying logic for us is the following

IEL−− and its extensions

• IPC axioms
• ϕ→©ϕ
• ϕ ∧©ψ →©(ϕ ∧ ψ)

• The rules are the Modus Ponens and©-monotonicity: from ϕ→

So,

• IEL− = IEL−− ⊕©(ϕ ∧ ψ)↔ (©ϕ ∧©ψ)⊕©> ↔ >,
• IEL = IEL− ⊕ ¬©⊥.

IEL−− and its extensions

Let L ∈ {IEL−−, IEL−, IEL}, then QL is a predicate extension of L. The
signature is purely relational with no constants and function letters.
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The completeness theorem

Let C be a class of modal cover systems, then Log(C) is its logic.

Soundness, [Goldblatt 2011]
Let C be a class of modal cover systems, then Log(C) contains the
�rst-order intuitionistic neighbourhood modal logic (intuitionistic
predicate logic plus the©-monotonicity rule)

The completeness theorem, [D. R. 2020]

• Let C be the class of all prenuclear cover systems, then
Log(C) = QIEL−−.

• Let C be the class of all multiplicative prenuclear cover systems, then
Log(C) = QIEL−.

• Let C be the class of all IEL cover systems, then Log(C) = QIEL.
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Thank you for your kind attention!
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