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Foreword

Remarks
- We are going to develop several ideas by Goldblatt on semantics of
intuitionistic modal predicate logics.

- This approach is based on the Dedekind-MacNeille completions and
cover systems. Such an approach is striclty connected with
Kripke-Joyal semantics.

- We consider modalities from the logic IEL™ algebraically as prenuclear
operators from point-free topology and the theory of locales.
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Completeness with respect to cover semantics

We have the following scheme:

The Dedekind-MacNeille completion
A Heyting algebra with an operator ————> A locale with an operator

| |

The Lindenbaum-Tarksi algebra A suitable cover system
Some logic The completeness theorem
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Completeness with respect to cover semantics

We have the following scheme:

The Dedekind-MacNeille completion
A Heyting algebra with an operator ————> A locale with an operator

| |

The Lindenbaum-Tarksi algebra A suitable cover system
Some logic The compl theorem

1. The diagram above “commutes”.

2. All main technical tricks are related to the Dedekind-MacNeille
completion.
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Heyting algebras and locales

The definition of a (complete) Heyting algebra

1. A Heyting algebra is a bounded distributive lattice # = (H, A, V, L, T)
with the binary operation = such that the following equivalence holds:

aAb<ciffa<b=c

2. A complete Heyting algebra (locale) is a complete lattice £ = (L, A, /)
such that finite infima distribute over arbitrary suprema:

an\VyB=\{aAb|beB}foreachBCL.
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Heyting algebras and locales

The definition of a (complete) Heyting algebra

1. A Heyting algebra is a bounded distributive lattice # = (H, A, V, L, T)
with the binary operation = such that the following equivalence holds:

aAb<ciffa<b=c

2. A complete Heyting algebra (locale) is a complete lattice £ = (L, A, /)
such that finite infima distribute over arbitrary suprema:

an\VyB=\{aAb|beB}foreachBCL.

Locales are about

1. A lattice-theoretic approximation of topogical spaces,

2. The complex algebra of an arbitrary intuitonistic Kripke frame is
actually a locale.
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A nucleus operator

Definition

A nucleus operator on a Heyting algebra # is a closure operator j
distributing over finite infima
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A nucleus operator

Definition
A nucleus operator on a Heyting algebra # is a closure operator j
distributing over finite infima

Nuclei are about

« Fixpoints form a Heyting subalgebra.

+ A nucleus is a (version of) geometric modality describing the notion of
local truth. This aspect is based on the notion of a
Lawvere-Tierney-Grothendieck topology.

« Dragalin-style semantics of intuitionistic and intermediate logics.
- As a modality, a nucleus is an algebraic analogue of the lax modality.

- We've already discussed the connection with the lax logic.
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Cover systems

Before the strict definition, we discuss some background stuff:
Background stuff

Cover semantics is based on the notion of local truth in
topological/topos-theoretic terms.

A statement ¢ is true at X (where X is a space or an open set), if X has
an open cover for each member of which ¢ is true.

The example is a property of a function being locally constant on some
neighbourhood.

Cover semantics is about abstract local truth with arbitrary cover
systems (non-necessary topologically based).

A statement ¢ is locally true at x (of some partial order) if x has a cover
C such that ¢ is true at every point of C.
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Cover systems

Let (P, <) be a poset and > a a binary relation between P and P(P).x € P
and C C P, then we say that x is covered by C (C is an x-cover), if x> C.
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Cover systems

Let (P, <) be a poset and > a a binary relation between P and P(P).x € P
and C C P, then we say that x is covered by C (C is an x-cover), if x> C.

(strictly localic) cover system
A (strictly localic) cover system is a triple S = (P, <,) such that

1. (Existence) There exists an x-cover C C 1 x

N

- (Transitivity) Let x> C and for each y € Cy > Cy, then x> U, Cy

. (Refinement) If x <y, then C> x implies that there exists an y-cover C’
suchthatC' C 1 C

4. (the strict localic axiom) Every x-cover is included in 1 x.

w
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Cover systems, due to [Goldblatt 2011]

Let S = (P, <,») be a strictly localic cover system.

j-operator
Define an operator j : P(P) — P(P) such that:

JX={xeP|3Cx>CCX}

x is a local member X, if x € jX. A subset X is localised, if jX = X. We call
such a set a proposition.

Theorem [Goldblatt 2011]

1. If X is an up-set, so is jX. Moveover, j is a nucleus operator on Up(P, <).

2. The set of localised up-sets is a locale with \/ X; = j(U;c, Xi)-
iel
3. Every locale is isomorphic to the locale of propositions of some cover
system.
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The Dedekind-MacNeille completion for Heyting algebras

Dedekind-MacNeille completion

Given a bounded lattice £, a completion of £ is a complete lattice £ that
contains £ as a sublattice. A completion £ is called Dedekind-MacNeille if
every element of a € £ is both a join and meet of elements of £:

a=\V{becl|la<b}=A{beL|b<a}

If £ is a Heyting algebra, then £ is a locale.
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The Dedekind-MacNeille completion for Heyting algebras

Dedekind-MacNeille completion

Given a bounded lattice £, a completion of £ is a complete lattice £ that
contains £ as a sublattice. A completion £ is called Dedekind-MacNeille if
every element of a € £ is both a join and meet of elements of £:

a=\V{becl|la<b}=A{beL|b<a}
If £ is a Heyting algebra, then £ is a locale.

Theorem

Every Heyting algebra is representable as a subalgebra of propositions of
some strictly localic cover system.

8/17



Completeness theorem for intutionistic predicate logic

Cover models

Let S = (P, <,») be a strictly localic cover system and let D be a
non-empty set, a domain of individuals. Let V be a valuation function that
maps each k-ary predicate letter P to V(P) : D* — Prop(S).

A D-assignment is an infinite sequence o = (00, 04,...,0n,...), where

o; € D for each i < w. Such a D-assignment maps each variable x; to the
corresponding ;.

A structure 9t = (S, D, V) is a cover model.
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Completeness theorem for intutionistic predicate logic

Cover models

Let S = (P, <,») be a strictly localic cover system and let D be a
non-empty set, a domain of individuals. Let V be a valuation function that
maps each k-ary predicate letter P to V(P) : D* — Prop(S).

A D-assignment is an infinite sequence o = (00, 04,...,0n,...), where
o; € D for each i < w. Such a D-assignment maps each variable x; to the
corresponding ;.

A structure 9t = (S, D, V) is a cover model.

The forcing relation

1. M, X, 0 IF P(Xn,, ..., Xn,) iff x € V(P)(on,, ..., 0n,).

2. M, x,0l- Liffxe0

3. M, X, 0 I ¢V iff there exists an x-cover C such that for eachy € C
M,y,ol-porM,y, ol .

4. M, X, o |- Ixnep iff there exist an x-cover C and d € D such that for each
y € Cone has M, y,o(d/n) Ik .
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Completeness theorem for intuitionistic predicate logic

Theorem
Intuitionistic predicate logic is complete w.r.t. strictly localic models.
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Completeness theorem for intuitionistic predicate logic

Theorem
Intuitionistic predicate logic is complete w.r.t. strictly localic models.

Based on the representation of the Dedekind-MacNeille completion of the
Lindenbaum-Tarski algebra with some strictly localic cover system. We put

variables as the set of domain individuals.
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Completeness theorem for intuitionistic predicate logic

Theorem
Intuitionistic predicate logic is complete w.r.t. strictly localic models.

Based on the representation of the Dedekind-MacNeille completion of the
Lindenbaum-Tarski algebra with some strictly localic cover system. We put
variables as the set of domain individuals.

Alternatively, one may construct a strictly localic cover system on certian
theories (ever weaker than prime ones). Such a construction (simpler than
the Henkin construction) is also due to Goldblatt.
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Modal cover systems

Let S = (P, <,») be a strictly localic cover system and R C P x P a binary
relation on P.

Modal cover system

A structure S = (P, R, <,r) is called modal cover system, if the following
hold:

1. (Confluence) If x < y and xRz, then there exists w such that yRw and
z<w.

2. (Modal localisation) If there exists C such that x> C C (R)A, then there
exists y € R(x) with a y-cover included in X.

where (R)A = {x € S|3y € AxRy} = R7"(A)

Theorem

Let £ be a locale and f : £ — £ a monotone operator, then (£, f) is
isomorphic to some algebra of propositions of some modal cover system.
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Prenuclear operators, the origins

Theorem
Let H be a Heyting algebra, a prenucleus on H is an operator monotone
j : H — H such that for each a,b € H:
1. a<ja
2. jaAb <j(aADb).
A prenucleus is called multiplicative if it distributives over finite infima

(an IEL™ -algebra). A multiplicative prenuclear algebra is called an
IEL-algebra, if jL = |
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Prenuclear operators, the origins

Theorem
Let H be a Heyting algebra, a prenucleus on H is an operator monotone

j : H — H such that for each a,b € H:
1. a<ja
2. jaAb <j(aADb).
A prenucleus is called multiplicative if it distributives over finite infima

(an IEL™ -algebra). A multiplicative prenuclear algebra is called an
IEL-algebra, if jL = |

Prenuclear algebras are about

- Generating nucleus on a locale with transfinite sequence of prenuclei.

- A nuclear reflection, an approximation of a nucleus on a locale with
prenuclei, to define the join of nuclei.

- A multiplicative prenuclear operator also reminds of the IEL™ modality.
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The Dedekind-MacNeille completion for prenuclear algebras

- Here we note that all those classes are closed under the
Dedekind-MacNeille completion.

« Let us drop the details, it is not so complicated, but tricky anyway.
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Prenuclear cover systems and their variations

Prenuclear cover systems
Let S = (S, <,>, R) be a modal cover system, then S is called prenuclear, if
the following two conditions hold:

1. R is reflexive.

2. Let x,y € S such that xRy, then there exists z € 1 y such that x < zand
X € R(2).
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Prenuclear cover systems and their variations

Prenuclear cover systems

Let S = (S, <,>, R) be a modal cover system, then S is called prenuclear, if
the following two conditions hold:

1. R is reflexive.
2. Let x,y € S such that xRy, then there exists z € 1 y such that x < zand
X € R(2).

A prenuclear cover system is called multiplicative (an IEL™-cover system),
if the following hold:

1. Ris serial, that is, for each x € S there exists y € S such that xRy.

2. if xRy and xRz then there exists w € © x N 1 y such that xRw.

3. Let x,y € S such that xRy, then there exists z € 1 y such that x < zand
X € R(2).
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Prenuclear cover systems and their variations

Prenuclear cover systems
Let S = (S, <,>, R) be a modal cover system, then S is called prenuclear, if
the following two conditions hold:

1. R is reflexive.
2. Let x,y € S such that xRy, then there exists z € 1 y such that x < zand
X € R(2).

A prenuclear cover system is called multiplicative (an IEL™-cover system),
if the following hold:
1. Ris serial, that is, for each x € S there exists y € S such that xRy.
2. if xRy and xRz then there exists w € © x N 1 y such that xRw.
3. Letx,y € S such that xRy, then there exists z € 1 y such that x < zand
X € R(2).

A multiplicative prenuclear cover system is called an IEL-cover system, if
for each x,y € Sif xRy and y > () implies x > (.
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The representation theorem for prenuclear algebras

Here we apply our Dedekind-MacNeille statement for the second item of
the following theorem:

Theorem, [D. R. 2020]

1. Every complete prenuclear algebra (as well as a multiplicative or an IEL
one) is isomorphic to some algebra of localised up-set of the
corresponding cover system.

2. Every prenuclear algebra (as well as a multiplicative or IEL one) is
isomorphic to some subalgebra of localised up-set of the
corresponding cover system.
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Prenuclear cover systems and their variations

The underlying logic for us is the following
IEL” and its extensions

« IPC axioms

* = Op

e ANOY = OpAY)

- The rules are the Modus Ponens and (O)-monotonicity: from ¢ —
So,

< IEL” =IELZ 8 O(e A YY) & (O AQOY) @ OT « T,
- IEL=IEL- ® - L.

IEL” and its extensions

LetL € {IEL_,IEL,IEL}, then QL is a predicate extension of L. The
signature is purely relational with no constants and function letters.
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The completeness theorem

Let C be a class of modal cover systems, then Log(C) is its logic.
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The completeness theorem

Let C be a class of modal cover systems, then Log(C) is its logic.
Soundness, [Goldblatt 2011]

Let C be a class of modal cover systems, then Log(C) contains the
first-order intuitionistic neighbourhood modal logic (intuitionistic
predicate logic plus the O)-monotonicity rule)
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The completeness theorem

Let C be a class of modal cover systems, then Log(C) is its logic.

Soundness, [Goldblatt 2011]

Let C be a class of modal cover systems, then Log(C) contains the
first-order intuitionistic neighbourhood modal logic (intuitionistic
predicate logic plus the O)-monotonicity rule)

The completeness theorem, [D. R. 2020]

+ Let C be the class of all prenuclear cover systems, then

Log(C) = QIEL".
- Let C be the class of all multiplicative prenuclear cover systems, then
Log(C) = QIEL™.

+ Let C be the class of all IEL cover systems, then Log(C) = QIEL.
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Thank you for your kind attention!



