
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ЗООЛОГИИ БЕСПОЗВОНОЧНЫХ КАФЕДРА ЗООЛОГИИ ПОЗВОНОЧНЫХ САНКТ-ПЕТЕРБУРГСКОЕ ОБЩЕСТВО ЕСТЕСТВОИСПЫТАТЕЛЕЙ ЗООЛОГИЧЕСКИЙ ИНСТИТУТ РАН

приглашают принять участие в шестьдесят седьмых чтениях, посвященных памяти Члена-корреспондента Академии наук СССР Профессора

Валентина Александровича ДОГЕЛЯ

Чтения состоятся в четверг 12 мая 2022 года
Начало в 11.00 в аудитории 133 (2053) Главного здания СПбГУ
с возможностью онлайн участия

ПРОГРАММА ЧТЕНИЙ

11.00 Вступительное слово

Гранович Андрей Игоревич, кафедра зоологии беспозвоночных СПбГУ.

11.20 План строения дикинсоний – древнейших подвижных животных

Иванцов Андрей Юрьевич, Палеонтологический институт РАН.

Дикинсонии (Dickinsonia) — древнейшие из известных подвижных многоклеточных животных, ископаемые остатки которых распространены в отложениях позднего эдиакария (венда), возрастом порядка 560-550 млн лет. Мобильность, передне-задняя и дорсо-вентральная полярность тела, ресничный слизевыделяющий эпителий, подстилаемый базальной пластиной, поперечное расчленение, отсутствие сквозной кишки, нервная система диффузного типа, осевой опорный тяж, мышечные волокна — такой реконструированный набор признаков сближает дикинсоний с Urbilateria, гипотетическим предком билатерально-симметричных животных.

11.50 Сколько тебе лет, животное? Определение индивидуального возраста ископаемых позвоночных

Скучас Павел Петрович, кафедра зоологии позвоночных СПбГУ.

Палеонтологи постоянно сталкиваются с необходимостью определения индивидуального возраста изучаемых ископаемых позвоночных для последующих палеобиологических и эволюционных реконструкций. Для этого они должны ответить на вопрос: «Сколько лет жило это вымершее животное?» Как это можно сделать, если от позвоночных в палеонтологической летописи сохраняются в основном минерализованные части скелета (в первую очередь кости и зубы)? В ходе доклада мы рассмотрим различные методы определения индивидуального возраста вымерших позвоночных и обсудим, какие исследования можно проводить после этого.

12.20 Сколько раз «краснели» эукариоты? Пути эволюции хлоропластов, унаследованных от красных водорослей, в контексте новых данных филогеномики

Златогурский Василий Владимирович, кафедра зоологии беспозвоночных СПбГУ

Симбиоз с цианобактериями, давший начало хлоропластам — один из важнейших прорывов в эволюции эукариот, который привёл к появлению огромного разнообразия сложных фотосинтезирующих организмов на нашей планете. На настоящий момент большинство исследователей сходятся в том, что это событие имело место единожды в эволюции — у общего предка представителей таксона Archaeplastida. Традиционно считалось, что за пределами Archaeplastida хлоропласты были приобретены в результате вторичного эндосимбиоза. В последнее время предприняты многочисленные попытки проследить эволюционную судьбу хлоропластов, унаследованных от красных водорослей, методами филогеномики. С появлением новых данных картина становится всё более противоречивой и объяснить её вторичным симбиозом всё сложнее. На настоящий момент вопрос далёк от своего разрешения, зато были открыты совершенно новые группы эукариот, включая не фотосинтезирующих представителей линии Archaeplastida. Возможно, ключом к пониманию путей эволюции «красных» хлоропластов является выявление более полной картины разнообразия эукариот, которое в значительной степени до сих пор скрыто от нас в микромире.

12.50 Трансарктические мигранты в Атлантике: история молодых видов Littorina (Neritrema)

Мальцева Арина Леонидовна, кафедра зоологии беспозвоночных СПбГУ.

Род литоральных брюхоногих моллюсков *Littorina* Férussac, 1822 — один из самых изученных среди морских беспозвоночных. Представители подрода *Littorina* (*Neritrema*) Récluz, 1869 за последние 40 лет стали популярным объектом экологических и эволюционных исследований, проводимых с привлечением самого современного методического арсенала. Тем не менее, эти представители все еще озадачивают исследователей биологическими парадоксами. Например, *Littorina saxatilis*, вынашивающий вид с прямым развитием, превосходит все виды рода со стадией планктотрофной личинки по диапазону распространения. Будучи молодым вселенцем в Северной Атлантике, подрод *Neritrema* претерпел в палео-плейстоцене бурный кладогенез — в тот период, когда виды литоральной фауны северного полушария массово вымирали в условиях циклов оледенения, а сохраняющиеся в рефугиумах виды моллюсков эволюционировали путем анагенеза. Что известно об эволюционной истории атлантических видов *Neritrema* и об истории формирования их современных ареалов? Какие объяснения их особого пути звучат в качестве гипотез, а что служит предметом спекуляций? На интересные вопросы иногда удается находить интересные ответы.

13.20 – 14.00 перерыв

14.00 Филогеография, как ключ к пониманию закономерностей географического распространения наземных тихоходок

Туманов Денис Владимирович, кафедра зоологии беспозвоночных СПбГУ, Зоологический институт РАН.

Тихоходки – группа микроскопических сегментированных животных. Вместе с членистоногими и онихофорами тихоходки составляют группу Panarthropoda, сочетая в своем строении глубоко примитивные черты с признаками далеко зашедшей специализации. Далеко зашедшая миниатюризация этих животных привела к значительному сокращению числа признаков доступных для морфологического анализа, что сильно затрудняет изучение реального видового разнообразия. С другой стороны, хорошо известная для наземных тихоходок способность формировать высокоустойчивые покоящиеся формы, создает впечатление высокой расселительной способности этих животных. Сочетание этих особенностей привело к доминированию концепции ограниченного числа широко распространенных полиморфных видов. Значительные перемены принесло привлечение молекулярных методов для установления филогенетических связей между таксонами и внутривидового генетического разнообразия. Филогеографические исследования позволили выявить закономерности в распростанении ряда таксономических групп. Доклад посвящен анализу современного состояния вопроса и рассказу о ведущейся в этом направлении работе.

14.30 Три молодца из одного ларца: паразиты полихеты Scoloplos armiger раскрывают секреты эволюции Apicomplexa

Паскерова Гита Георгиевна, кафедра зоологии беспозвоночных СПбГУ, Симдянов Тимур Геннадьевич, кафедра зоологии беспозвоночных МГУ.

Необычные споровики (Sporozoa, Apicomplexa) из полихеты Scoloplos armiger издавна привлекали внимание ведущих зоологов мира (Brasil, 1905; Caullery, Mesnil, 1898; Chatton, Dehorne, 1929; Chatton, Villeneuve, 1936; Dogiel, 1909). В России, благодаря исследованиям В.А. Догеля и А.А. Добровольского, интерес к этим протистам не угасал. Основываясь на архивных материалах наших учителей и на результатах собственных исследований, мы расскажем о трех кишечных паразитах сколоплоса, об особенностях их строения, жизненных циклов и взаимоотношений с хозяином, а также затронем вопрос о происхождении паразитизма у споровиков и родственных им протист.

15.00 Регенерация аннелид: прошлое, настоящее и перспективы Старунов Виктор Вячеславович, кафедра зоологии беспозвоночных СПбГУ, Зоологический институт РАН.

Способностью к регенерации в той или иной мере обладает большинство ныне живущих многоклеточных организмов. Кольчатые черви в этом отношении являются одной из наиболее интересных групп, поскольку среди них можно найти как представителей, способных полностью восстанавливаться из единственного сегмента, так и практически неспособных к репаративной регенерации. В докладе пойдет речь о современном состоянии исследований регенерационных процессов аннелид. Почему одни черви могут с легкостью восстанавливать утраченные части, а другие нет? Каким образом происходят регенеративные процессы и какие механизмы лежат в их основе?

2022 — Год зоологии в Санкт-Петербургском государственном университете